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pressions for the magnetic tensors by taking into account 
mixing with all states resulting from singly excited configu­
rations25 does not alter the above results significantly. 

Our results indicate that free Mn(cp)2 and Mn(mecp)2 
molecules are so close to the low-spin-high-spin crossover 
point that the small intermolecular forces as present in fro­
zen solutions or molecular crystals are sufficient for induc­
ing the observed changes in the electronic ground state con­
figuration. Consistent with ligand field theoretical expecta­
tions the high-spin ground state is found preferentially in 
host systems favoring large metal to ring distances, while 
the low-spin ground state is induced by sandwich matrices 
exhibiting short metal to ring distances. 

We conclude that the most reasonable explanation of the 
anomalous magnetic behavior2-7 of undiluted Mn(cp)2 and 
Mn(mecp)2 is a temperature dependent high-spin-low-spin 
equilibrium. We found that a large part of the Xm(^) 
curve3'4 of Mn(cp)2 below the transition point can even be 
explained by an almost constant energy difference £(6Aig) 
— £(2E2g) « + 0.5 kcal/mol. This interpretation is consis­
tent with our observation that the broad esr signal7 of pure 
Mn(cp)2 at g = 2 disappears completely at 4.20K; this 
band must be due to the thermally populated high-spin 
state. 
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Synthesis and Characterization of a Selenabenzene1 

Sir: 

Thiabenzenes recently have been the subject of thorough 
investigations.2-4 We now report the first example of an au­
thentic selenabenzene, l-pentafluorophenyl-2-methyl-2-

selenanaphthalene (1), and present evidence which refutes 
earlier claims5-6'for stable 10-selenaanthracenes 2 and 3. 

Reaction of 2-selenanaphthalenium perchlorate7 with 
pentafluorophenylmagnesium bromide in ether furnished 
l-pentafluorophenyl-2-seleno-3-chromene (60%) which 
upon methylation with silver tetrafluoroborate-methyl io­
dide gave l-pentafluorophenyl-2-methyl-2-seleno-3-chro-
menium tetrafluoroborate (4), (78%) as a mixture of dia-
stereomers (1/2.8 cis/trans, by nmr).10 Treatment of the 
diastereomeric mixture with dimsyl-^5-lithium (1 equiv) in 
toluene-^8-l,2-dimethoxyethane under nitrogen at low 
temperature" immediately produced a deep burgundy solu­
tion. The 1H nmr spectrum12 indicated that this solution 
contained 1. Notable features were the characteristic up-
field doublet of the 3-vinyl proton and the side bands ac­
companying the methyl singlet due to 77Se-1H scalar cou­
pling. The 77Se-1H side bands clearly attest to the presence 
of a selenium-methyl bond,13 and the high field doublet12 

at u 4.89 reflects the ylide nature of the selenabenzene,14 a 
phenomenon seen with the corresponding thiabenzene, 1-
pentafluorophenyl-2-methyl-2-thianaphthalene (5), for 

which 8 4.76 (d, 37HH = 8 Hz) was observed.3'17 In the 
presence of DMSO-^6, further splitting of the methyl and 
4-vinyl proton signals was observed. This is reasonably at­
tributed to deuterium coupling, the deuterium being incor­
porated by an exchange reaction with the solvent at the 
methyl and 3-vinyl positions.18 

The absorption band responsible for the intense color of 1 
has Xmax 500 nm (DMSO), closely comparable to the Xmax 
480 nm (DMSO) observed for 5 and to the Xmax in the visi­
ble region of other authentic thiabenzenes.3 The structure 
for 1 is also supported by mass spectral data.19 

When the burgundy solution was allowed to stand at 
room temperature, thermal decomposition rapidly took 
place, as evinced by decolorization of the sample to a pale 
orange. Decay of the original sample was confirmed by 1H 
nmr.20 The visible spectrum of 1 was monitored with time 
to afford the interval for 50% decomposition (first half-life) 
of47minat250.21 

It is apparent that 1 has a lifetime between two and three 
orders of magnitude shorter than the sulfur analog 5 under 
the same conditions, 249 hr.3 This order of relative stabili­
ties may be presumed to exist between other structurally 
analogous selena- and thiabenzenes. The instability of 1 
points to the fact that selenabenzenes, unless substituted by 
strongly electron withdrawing groups, are not likely to ex­
hibit sufficient stability to be readily observed. 

In light of these conclusions, the reported5'6 synthesis and 
isolation of 2 and 3 and their description as stable com­
pounds appeared suspect, particularly so since the physical 
properties of these solids were strikingly reminiscent of 
those22,23 displayed by materials previously characterized 
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as "stable thiabenzenes," which have been shown not to be 
authentic thiabenzenes.2 Indeed, treatment of 10-seleno-
xanthylium and 9-phenyl-10-selenoxanthylium perchlorates 
with excess phenyllithium in ether, as described,5 afforded 
powdery tan solids 6 and 7, respectively.24 Both of these 
products are evidentially (molecular weights; mass, nmr, 
and uv spectra) not 10-selenaanthracenes 2 and 3 but are 
oligmers of undetermined composition. This conclusion is 
consistent with the observation5-6 that deprotonation of 9-
phenyl-10-p-anisylselenoxanthenium perchlorate (8) by so­
dium hydride in tetrahydrofuran is followed by rearrange­
ment to 9-phenyl-9-p-anisylselenoxanthene (9). Since this 
reaction must proceed through a 10-selenaanthracene inter­
mediate, 10, the latter can only have a transient existence, 

C l O 4 " I I 
CHH.-P-OCH, CH4-P-OCH:, 

8 9 10 

in complete analogy with the corresponding sulfur com­
pounds.2 Thus, the solid substances isolated5 from the reac­
tion of phenyllithium with selenoxanthylium salts are assur­
edly not selenaanthracenes. 
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18O Exchange Studies on V ]0O286 in Aqueous Media 

Sir: 

Over recent years a continuing interest has been shown in 
the aqueous polymerization of ions of the type M O 4 " - , in­
cluding VO 4

3 - . 1 ' 2 While the understanding of the vanadi­
um system has improved, little structural information nor 
modes of reaction are available even in aqueous media. The 
decavanadate ion V;o0286~ appears to be a well-defined, 
easily prepared ion3 and may be the best starting point for 
future studies in the vanadium(V) system. Thus it is vital 
that the aqueous nature of this ion be well understood. 
While solid structures containing the ion have been re­
ported4 '5 they can only suggest the structure of the ion in 
solution. Likewise the precise potentiometric and spectral 
studies6-7 do not give much information about the exact 
species present in solution. A kinetic study of oxygen ex­
change between solutions of (NH4)6Vio028-6H20 and H2O 
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